

IDT – OCT 22 Presentation

TRIGGER

- General Trigger Architecture
- Trigger Tower Level Signals
- Trigger Veto Generator
- Trigger Scheduler
- Trigger Message Generator
- Trigger Data Contribution
- Summary of Features / Limitations

FILTER

- Review of development path
- Event Size/Event Format
- CPU Comparisons
- Results
- Summary/Problems

TRIGGER & FILTER

Bringing it all together

What I Am Not Talking About

- Conditioning of the Front-End Signals
 - This is an important issue, if we've got time, let's talk
- Details of GLT Commanding, Control, and Configuration
- Internal Timing (how long to form the trigger decision)
- How to Test the GLT / How to Determine the Correct Timing
 - Note that this does not mean we have not thought about these problems and how to address them
 - For example, the CAL beam test offers a unique opportunity in this area
 - It is just beyond the scope and time for this presentation
 - For those ultimately reviewing the GLT design, this is a good place to stick your finger in

Trigger Block Diagram – Trg Path Viewpoint

Trigger Front – End Signals

- ACD Primitives
 - 216 ACD Lo Threshold Signals
 - 12 ACD Hi Threshold Signals
- CAL 2 / tower:
 - 16 tower level ORs of LO discriminator.
 - 16 tower level ORs or HI discriminator
- TKR 1 / tower:
 - 16 tower 3-in-a-row coincidence of layer ORs.
- Remember the number of wires is 2x the numbers above
 - IO Pins are a problem

Trigger Veto Generator

- Acts as a receiver for the ACD signals
 - Addresses the IO problem
 - Reduces 216 signals to 18 outputs destined for Trigger Scheduler
- ACD signals are logically grouped
 - Tile signals (96 signals, only 89 active)
 - Ribbon signals (12 signals)
 - These are basically ignored by the Veto Generator
- All the tile signals are routed to 18 OR gates
 - Each of the 96 inputs can be enabled/disabled
 - 16 of these OR gates are used as the TKR tower vetos
 - The remaining 2 are (can be?) used to define
 - A set of UPPER ACD tiles
 - A set of LOWER ACD tiles
 - May be used with the CAL signals as an additional veto
 - Working with Steve Ritz on this point

- Processes the trigger signals and generates a trigger request message
- So what are the received signals?
 - From the towers and AEM

```
TKR 3-in-a-row (16 processed to 16 raw/1 summary)
CAL LO (16 processed to 16 raw/1 summary)
CAL HI (16 processed to 16 raw/1 summary)
ACD HI or CNO (12 processed to 12 raw/1 summary)
```

- From the Trigger Veto Generator
 - ACD Tower Level Veto (16)
 - ACD UPPER/LOWER (1 or 2)
- Internal Signals
 - CPU trigger request (solicited)
 - Periodic

- Before any coincidence can be formed a coincidence window needs to be generated
 - Width of the window is determined by the trigger jitter
 - Complicated ways to dynamically optimize this
 - We have just fixed this at a fixed, but programmable width
 - Likely around ~500nsecs
 - Only signals that may result in a trigger can initiate a window start, called a window turn
 - For example, ACD veto signals cannot produce a trigger, so they cannot start a window turn
 - Well, at least not in normal running
 - They can for diagnostic purposes
 - Therefore, all inputs to the trigger have an enable/disable to control whether they can start a window turn

Can now form coincidences

- A coincidence is determined by integrating the signals during the time the window is open
 - If a signal is TRUE any time during the time the window is open, it is considered TRUE at window close time
- At window close time
 - 3-in-a-row TKR tower signals are ANDed with their corresponding veto signals
 - The UPPER ACD is ANDED with NOT CAL_HI
 - Again, talking to Steve about this
 - This reduces 18 signals to 2 signals.

- Scheduler forms an 8 bit vector consisting of
 - TKR 3-in-a-row
 - CAL LO
 - CAL HI
 - ACD HI (CNO)
 - TKR 3-in-a-row, vetoed
 - CAL vetoed
 - Solicited (cpu trigger)
 - Periodic
- State of this 8 bit vector is used to drive the Trigger Message Generator
 - Well, not quite, 256 was a bit much to implement
 - So the 256 inputs are mapped down to 16 via a lookup table
 - Effectively means 16 independently controlled trigger slots
 - This 4-bit value is passed on to the Trigger Message Generator

Trigger Message Generator

- Purpose is to generate a trigger message using
 - The 4 bit vector from the Trigger Scheduler
 - The throttle line
 - The event number
- How does it do this?
 - The 4 bit vector indexes a 16 entry table giving the static portion of the trigger message
 - 8 bit prescaler
 - 5 bit destination address (which CPU to send it to)
 - 1 bit ACD/CAL Zero Suppress enable/disable select
 - 1 bit CAL auto-range enable/disable
 - Miscellaneous other techno-geek bits
 - The prescale is checked, then decremented
 - The throttle is checked

Trigger Message Generator

- If not inhibited by the prescale or throttle, then
 - If the destination CPU address is dynamic (one of the techno-geek bits)
 - The CPU address is selected from the next entry in a circular buffer
 - » 32 entries allows static load balancing to ~3%
 - If the destination is static, it is just used
 - The event number is added to the trigger message
- The trigger message is broadcast to 16 TEMs/AEM/GLT

Features

- The event number names the event and is tacked onto every contributor's data
 - Allows integrity checking after the event is assembled
 - No longer any need for a local timestamp
 - A global clock is used throughout the system
 - Timestamp is rigidly tied to the event number in the GLT
- The destination address can be a broadcast address
 - Allows synchronization events to passed to the system
 - For example, orderly shutdown of the data pipeline
 - Shuttles diagnostic event classes to a particular CPU
 - CNO events
 - Pedestal monitoring events

Trigger Block Diagram – Data Viewpoint

GLT Data Contribution

Tracker 3-in-a-row	Trigger Request Vector					
CAL HI	CAL LO					
ACD HI	ACD Tower Vetoes					
ACD Veto List (4-8 words)						
Inhibited by deadtime Deadtime						
(count of window turns)	(count of SYSTEM clocks)					
Sent	Inhibited by prescaler					
(count of window turns)	(count of window turns)					
TIME						
(count of free running 20MHz clock)						
PPS						
(value of free running count register at last 1PPS time hack)						

GLT Data Contribution

- Logic can be checked by comparing with TEM based signals
 - Trigger Request vector
 - 3-in-a-row
 - CAL Low
 - CAL Hi
 - CNO
 - Tower Vetoes
 - ACD Veto List
- Deadtime from Window Turns can be the monitored
 - # of Window Turns = 'Prescale' + 'DeadTime' + 'Sent'
 - Essentially
 - Prescale counts voluntary deadtime
 - DeadTime counts involuntary deadtime
- The time of the event is precisely tagged using PPS + TIME
 - Well not quite, the PPS must reference the actual GPS msg.
 - It has the value of the 20MHz at the 1PPS and a 1PPS counter

GLT Flexibility

- Veto Generation
 - Arbitrary definition of tiles shadowing the towers
- Trigger Generation
 - Trigger is an arbitrary combination of the input signals
 - For example: TKR + CAL_LO
 - Ability to define and prescale monitor triggers
 - Ability to take non-threshold suppressed ACD/CAL events
 - Allows one to continuously monitor the pedestals
 - Ability to take non-autoranged CAL events
 - Allows one to monitor range overlap in CNO events
- Trigger Data
 - Monitors the logical consistency of the GLT itself
 - Can be beat against the TEMs to monitor consistency
 - Precise deadtime monitoring
 - · Some help in determining the source of the deadtime

Additional Flexibility in the GLT

- Sufficient range on various timing registers to map out the timing response
- Input signals are maskable to remove hot/noisy channels
- Intermediate signals are maskable

GLT Trigger Limitations

- Prescales limited to 8 bit counters
 - Not a problem for physics triggers
 - Even a 10K trigger can be scale down to 40 Hz
 - Periodic trigger is a problem
 - It will work from a scaled down system clock, but...
 - Not enough dynamic range
 - Want ~100Hz to 10KHz for Calibration/Testing purposes
 - Want ~.1Hz to 100 Hz for other purposes
- Clock time registers have finite width necessitating keep alive triggers
- Considering adding 'trigger received counters' on the TEMs
 - Allows cross-checking when the system timeouts
- Should we record the 216 individual ACD signals or just the ORs?
- And the biggie, can one really get a reliable coincidence between the CAL and TKR?

Event Filtering

- How we are doing it and how we are doing at doing it
- Input/Output Event Size estimates
- CPU Comparisions
- Results
- Summary/Problems

Event Filtering – Development Path

- Using Monte Carlo Events Generated In GLASTsim
 - Event size includes noise at prescribed rates (see next slide)
 - Event layout is "near final" DAQ format
 - Since dPDR we have taken another step closer to this goal
 - We now have real hardware to check data format
- Algorithmic Development
 - Designing and debugging on SUN/LINUX boxes
 - Measuring performance on Motorola MV2303 and RAD750
- Event Features Used In Current Round Of Analysis
 - TKR layer hit bits (very fast access)
 - ACD tile hit bits (disordered but access still fast)
 - CAL energy sums (slowest access ... needs coarse calibration constants)
 - Minimal track finding

Event Filtering – Event Size

- Event Sample Generated With
 - 1 x 10⁻² CAL noise occupancy x 1536 x 2 logs ends
 - 1 x 10⁻⁴ TKR noise occupancy x 884k strips

Subsystem	Hits	Noise	Fixed Overhead Bits/hit		Volu	ıme		
					Bits	Bytes		
CAL	26 logs	30 logs	32 bits / tower * 16 towers	32	2304	288		
TKR	93 strips	88 strips	72 bits / tower * 16 towers	20	4772	596		
ACD	5 tiles	1 tile	216	16	312	39		
TRG			320		320	40		
	"Typical" Event 7708 963							
	750-8	50 Bytes						

- This is the input event size
 - Output event size will be smaller
 - My guess, factor of 2, into the 400-500 byte range
 - Dan Wood did some work on the tracker data

Event Filtering – CPU Comparisons

	Feature Comparison										
Processor Board	CPU	Instructions Per	Clock Speed (MHz)		Memory Wait States	Execution Units			L1 Cache (kByte)		
		Cycle	CPU	Memory		Integer	Float	Load/ Save	Branch	Prog	Data
Motorola MV2303	603	1.25	200	66	9+1+2+1	1	1	1	0.	16	16
NRL custom	603	1.25	133	50	6+4+4+4	1	1	1	0.	16	16
BAE RAD 750	750	1.86	133	33	4+1+1+1	2	1	1	1.	32	32

	Performance Comparison								
Processor Board	CPU	Memory	СРИ						
Motorola MV2303	603	1.0	1.0						
NRL custom	603	1.0-1.5	1.5						
BAE RAD750	750	2.0	1.0-1.5						

Event Filtering - Results

Cut		Events				
	Analyze	d (%)	Rejecte	d (%)	603	750
No CAL LO + Veto Tile	15420	(100.0)	9923	(64.4)		
ACD Splash Veto (pass 0)	5497	(35.6)	1566	(10.2)	4.5	9.2
CAL < 350Mev + Veto Tile	3931	(25.5)	224	(1.5)		
CAL < 10 Mev + Any Tile	3707	(24.0)	464	(3.0)		
ACD Splash Veto (pass 1)	3243	(21.0)	69	(0.4)	0.3	0.4
TKR tower match with ACD top tile	3174	(20.6)	424	(2.7)		
TKR tower match with ACD side tile	2750	(17.8)	304	(2.0)		
No connection between CAL energy & TKR	2446	(15.9)	1152	(7.8)	5.6	6.7
CAL Energy Layer 0/Total Energy < .01	1294	(8.4)	156	(1.0)		
CAL Energy Layer 0/Total Energy > .90	1138	(7.4)	94	(0.6)	0.1	0.2
Before track finding	1044	(6.8)	14376	(93.2	5.8	10.6
TKR/ACD matching	1044	(6.8)	262	(1.7)		
Projects into skirt region	782	(5.1)	83	(0.5)		
E < 350 Mev, Number of Tracks < 2	699	(4.5)	461	(3.0)	29.9	40.5
Final	238	(1.5)	15182	(98.5	7.7	13.3

Event Filtering - Summary

- Compared With Jan PDR
 - Rejection Rate has gone from 82.6% ☐ 98.4%
 - Time (MV2303) has gone from 15-20 ☐sec ☐ 7.5-12.5 ☐sec
- Still Need To Go From 98.4%
 □ 99.8%
 - But have the numbers on our side
 - >95% rejection in 14 ☐sec/event (RAD750) leaves 1.4 msec/event
 - To preserve 100% margin in one CPU, still have 700 □sec/event
 - » This is 50 times the event processing time used so far
- More Confident In Where We Stand
 - Do not need to extrapolate estimates as far
 - Know the target CPU performance much better
 - 1 BAE 750 or 1.5 NRL 603e is sufficient to do the <u>filtering</u> with 100% margin
- Can Now Return To Estimating Other CPU Demands
 - Previously considered small compared to filtering

Event Filtering Summary

- Given the recent decision to accept a baseline of 3-4 EPUs, the filtering problem no longer drives the # of CPUs hardware decision
 - So, other issues are getting my attention
 - Documents
 - IVV survey
 - ITAR/VISA issues
 - This is NOT to say that this is still not an important issue
 - After all, it has NOT been demonstrated that we can filter sufficiently to fit into the available bandwidth
 - All that is being said here is that CPU cycles are not the problem

Problems

- Photon Efficiency remains a mystery, why?
 - Easy to determine the numerator
 - Just run the filter and count how many survive
 - It's the denominator
 - Not every photon producing a MC event is analyzable
 - Steve and I need to solve this problem together
 - And here in lies the real problem
 - The cross-section of Steve and I having an overlap of free time is vanishingly small
 - More on this at the end

Bonus Coverage

- With the simple TKR/ACD shadowing algorithm (in trigger hardware or early stage selections), we have achieved ~70% rejection.
- Is this good enough?
- If not
 - I've tried moving some of the simpler filter cuts to hardware
 - In particular, if CAL_HI is clear, then pitch the event if any ACD tiles in the UPPER portion are hit
 - This pitches an additional 9%
 - But the more I think about this, the wackier it seems.
 - » Why bother with TKR/ACD veto, it's a subset of this one?
 - » Answer is, can tune this cut

Trigger Classes - Detailed

Tkr Veto	Splash	Acd Lower	Acd Upper	CAL LO		TK	R	CAL LO	& TKR
Ö		Wer	per	Back	Gamma	Back	Gamma	Back	Gamma
				3.4	17.4	4.5	24.6	2.1	10.3
				0.9	2.2	3.5	1.6	.4	1.9
				2.6	2.8	4.0	12.4	.8	4.2
				1.4	1.5	3.4	.7	.8	.8
				0.1	Ö	0.2		.1	.0
				.0	.0	.0	.0	.0	.0
				0.2	.0		.0	.3	.0
						40.6	4.6	4.2	1.0
						.0	.0	.0	.0
						12.0	4.8	3.7	1.4
						2.4	9.	1.3	0.2
						.0	.0	.0	.0
						JJRussel 2.1	1.5	6.3	1.0

Trigger Classes Summary

Class	Background (%)	Gamma (%)
Impossible	0	0
TKR Veto	72.6	15.4
CAL Veto	8.6	6.5
Splash Veto	.3	.0
Total Veto	81.6	22.0
TKR	8.5	37.0
CAL LO	7.4	22.0
TKR & CAL LO	1.9	15.4
CAL HI	.6	3.9
Total Triggers	18.4	78.0

Open Issues

- Filtering
 - Common question:
 - Why isn't the filtering done?
 - Final reduction to the 1:300
 - Studies on losing a tile and other realistic failure scenarios
 - Answer:
 - It has taken a priority hit
 - FSW's interest in the filtering was how many CPUs does it take.
 - With 3-4 EPUs, no longer interesting, we've got enough
 - More serious issue
 - Steve and JJ are swamped with so many other things, that amount free time overlap is vanishingly small
 - Is it time to give this problem to someone else?
 - Honest answer, I suspect for both of us, it is the one thing that keeps our creative juices flowing

Open Issues

Pulse Pileup

- Analog signals and hence digital signals can persist ~msec in face of CNO particles.
- These signals can be captured in subsequent events.
 - Could result in (e.g.) ghost tracks in TKR.
- Not simulated in Monte Carlo
- Impact not understood
 - Effect on the on-board software filter
 - Effect on offline "analyzability" of events

TOT integrity

- Pile-up can destroy TOT information
 - Unknown which are destroyed
- DAQ problem is that TOT is not buffered
 - Fundamental problem is analog signal can be a .1-1msec signal
 - Trying to mix this in a system with a 20usec response time